Search results for "Phase-change material"

showing 9 items of 9 documents

Analyses of phase change materials’ efficiency in warm-summer humid continental climate conditions

2017

The usage of phase change materials (PCMs) is a way to store excess energy pro- duced during the hot time of the day and release it during the night thereby reducing the overheating problem. While, in Latvian climate conditions overheating is not a big issue in traditional buildings since it happens only a couple of weeks per year air conditioners must still be installed to maintain thermal comfort. The need for cooling in recently built office buildings with large window area can increase signi cantly. It is therefore of great interest if the ther- mal comfort conditions can be maintained by PCMs alone or with reduced maximum power of installed cooling systems. Our initial studies show tha…

Humid continental climateEngineeringMeteorologyMaximum power principlebusiness.industry020209 energyMultiphysicsThermal comfort02 engineering and technology7. Clean energyPhase-change materialPhase changePhase change materials (PCM)13. Climate actionAir conditioning0202 electrical engineering electronic engineering information engineeringbusinessOverheating (electricity)Simulation
researchProduct

On the Efficacy of PCM to Shave Peak Temperature of Crystalline Photovoltaic Panels: An FDM Model and Field Validation

2013

The exploitation of renewable energy sources and specifically photovoltaic (PV) devices have been showing significant growth; however, for a more effective development of this technology it is essential to have higher energy conversion performances. PV producers often declare a higher efficiency respect to real conditions and this deviation is mainly due to the difference between nominal and real temperature conditions of the PV. In order to improve the solar cell energy conversion efficiency many authors have proposed a methodology to keep the temperature of a PV system lower: a modified crystalline PV system built with a normal PV panel coupled with a Phase Change Material (PCM) heat stor…

EngineeringControl and OptimizationEnergy Engineering and Power TechnologyMechanical engineeringThermal energy storagelcsh:Technologyjel:Q40experimental validationjel:Qjel:Q43jel:Q42Settore ING-IND/10 - Fisica Tecnica IndustrialeElectronic engineeringjel:Q41Energy transformationjel:Q48jel:Q47crystalline photovoltaic moduleElectrical and Electronic EngineeringEngineering (miscellaneous)finite difference methodjel:Q49Settore ING-IND/11 - Fisica Tecnica AmbientaleRenewable Energy Sustainability and the Environmentbusiness.industrylcsh:TPhotovoltaic systemEnergy conversion efficiencyFinite difference methodFinite differencejel:Q0phase change material; crystalline photovoltaic modules; heat storage; finite difference method; experimental validationPhase-change materialjel:Q4Renewable energyheat storagecrystalline photovoltaic modulesbusinessphase change materialEnergy (miscellaneous)Energies
researchProduct

Multifunctional polyurethane foams with thermal energy storage/release capability

2020

In this work, polyurethane (PU) insulating panels containing different amounts of a microencapsulated paraffin with a nominal melting temperature of 24 °C, used as phase change material (PCM), were produced. The resulting panels behaved as multifunctional materials able to thermally insulate and simultaneously storing/releasing thermal energy near room temperature. The panels were characterized from a microstructural, thermal and mechanical point of view. Viscosity measurements highlighted an increase in the viscosity values of the PU liquid precursors due to the addition of the capsules, and this could lead to some difficulties during the production stages, especially in the mixing and foa…

PolyurethaneThermogravimetric analysisanimal structuresMaterials scienceMechanical propertiesThermal energy storagelaw.inventionViscositychemistry.chemical_compoundThermal conductivityDifferential scanning calorimetryOptical microscopelawPhysical and Theoretical ChemistryComposite materialThermal propertiePolyurethaneWaxSettore ING-IND/11 - Fisica Tecnica AmbientaleCondensed Matter PhysicsFoamPhase-change materialSettore ING-IND/22 - Scienza E Tecnologia Dei Materialichemistryvisual_artvisual_art.visual_art_mediumJournal of Thermal Analysis and Calorimetry
researchProduct

Experimentally constrained density-functional calculations of the amorphous structure of the prototypical phase-change materialGe2Sb2Te5

2009

Phase change materials involve the rapid and reversible transition between nanoscale amorphous $(a\text{\ensuremath{-}})$ and crystalline $(c\text{\ensuremath{-}})$ spots in a polycrystalline film and play major roles in the multimedia world, including nonvolatile computer memory. The materials of choice are alloys of Ge, Sb, and Te, e.g., ${\text{Ge}}_{2}{\text{Sb}}_{2}{\text{Te}}_{5}$ (GST) in digital versatile disk--random access memory. There has been much speculation about the structure of $a\text{\ensuremath{-}}$ GST, but no model has yet received general acceptance. Here we optimize the structure by combining the results of density-functional calculations with high-energy x-ray diffr…

DiffractionPhase changeCrystallographyMaterials scienceX-ray photoelectron spectroscopyStructure (category theory)CrystalliteCondensed Matter PhysicsPhase-change materialElectronic Optical and Magnetic MaterialsAmorphous solidPhysical Review B
researchProduct

Finite difference thermal model of a latent heat storage system coupled with a photovoltaic device: Description and experimental validation

2014

Abstract The use of photovoltaic (PV) systems has been showing a significant growth trend but for a more effective development of this technology it is essential to have higher energy conversion performances. Producers of PV often declare an higher efficiency respect to real conditions and this deviation is mainly due to the difference between nominal and real temperature conditions of the PV. To improve the solar cell energy conversion efficiency many authors have proposed a methodology to keep lower the temperature of a PV system: a modified PV system built with a normal PV panel coupled with a Phase Change Material (PCM) heat storage device. In this paper is described a thermal model ana…

EngineeringFDMRenewable Energy Sustainability and the Environmentbusiness.industryPhotovoltaic systemEnergy conversion efficiencyFinite difference methodFinite differenceEnergy balancePVThermal energy storagePhase-change materialControl theoryPCMEnergy transformationbusinessRenewable Energy
researchProduct

Nucleus-driven crystallization of amorphous Ge2Sb2Te5: A density functional study

2012

Early stages of nucleus-driven crystallization of the prototype phase change material Ge${}_{2}$Sb${}_{2}$Te${}_{5}$ have been studied by density functional/molecular dynamics simulations for amorphous samples (460 and 648 atoms) at 500, 600, and 700 K. All systems assumed a fixed cubic seed of 58 atoms and 6 vacancies. Crystallization occurs within 600 ps for the 460-atom system at 600 and 700 K, and signs of crystallization (nucleus growth, percolation) are present in the others. Crystallization is accompanied by an increase in the number of ``$ABAB$ squares'' ($A$: Ge, Sb, $B$: Te), and atoms of all elements move significantly. There is no evidence of cavity movement to the crystal-glass…

Materials scienceCondensed Matter PhysicsPhase-change materialElectronic Optical and Magnetic Materialslaw.inventionAmorphous solidMolecular dynamicsmedicine.anatomical_structureChemical physicslawPercolationmedicineCrystallizationNucleusPhysical Review B
researchProduct

Effect of ion irradiation on the stability of amorphous Ge2Sb2Te5 thin films

2008

The archival life of phase-change memories (PCM) is determined by the thermal stability of amorphous phase in a crystalline matrix. In this paper, we report the effect of ion beam irradiation on the crystallization kinetics of amorphous Ge2Sb2Te5 alloy (GST). The transition rate of amorphous GST films was measured by in situ time resolved reflectivity (TRR). The amorphous to crystal transformation time decreases considerably in irradiated amorphous GST samples when ion fluence increases. The stability of amorphous Ge2Sb2Te5 thin films subjected to ion irradiation is discussed in terms of the free energy variation of the amorphous state because of damage accumulation. © 2008 Elsevier B.V. Al…

Nuclear and High Energy PhysicsMaterials scienceAlloyAnalytical chemistrySurfaces Coatings and FilmReflectivityengineering.materialSettore ING-INF/01 - ElettronicaSettore FIS/03 - Fisica Della MateriaIonMatrix (chemical analysis)PHASE-CHANGE MATERIALSThermal stabilityIrradiationThin filmSILICONInstrumentationRBSChalcogenideMEMORYSurfaces and InterfacesReflectivityAmorphous solidIon irradiationengineeringDefectStability
researchProduct

PCM Thermal Energy Storage in Buildings: Experimental Study and Applications

2015

Abstract The study aims at analyzing the performance of Phase Change Materials (PCMs) in residential housing for different climates. This paper presents the results of an experiment performed in the Concordia University Solar Simulator and Environmental Chamber research facility (SSEC, Montreal, Canada). PCM boards were embedded on the back wall of a test hut placedin the climatic chamber. Several experiments were performed to explore the potential for verification of the proposed analysis and to produce enough data to perform model calibrations. Results show a strong increase in the apparent thermal inertia of the room allowing for a reduction in daily temperature fluctuations in the test …

EngineeringEmulationSettore ING-IND/11 - Fisica Tecnica AmbientaleMeteorologyThermal inertiabusiness.industryCold climateModel calibrationEnvironmental chamberThermal energy storagePhase-change materialsBuilding simulationMultiple layerEnergy(all)EnergyPlusPhase change materials modelling experiment energy plus parametric analysisThermal massSolar simulatorAerospace engineeringbusinessEnergy Procedia
researchProduct

Density functional/molecular dynamics simulations of phase-change materials

2013

computer memory materialsrakennecrystallizationamorphoustiheysfunktionaaliteoriakiteytyminenphase-change materialsfaasimuutosmateriaalisemiconductormolecular dynamicsvitrificationchalcogenideatomic structureatomirakennepuolijohteetkalkogenidimolekyylidynamiikkacomputer simulationscrystallinesimulointimuistitdensity functional theory
researchProduct